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New Radical Allylation Reaction of lodides Scheme 1

Fredéric Le Guyader', Béatrice Quiclet-Siré, =\—soz-a

Stephanie Seguiri,and Samir Z. Zard** 2a
AIBN

Institut de Chimie des Substances Naturelles, CNRS
91198 Gif-sur-Yette, France A=l 1 =\_so.x
Laboratoire de Syntlee Organique associau CNRS , . 2 2 . SOLEt
Ecole Polytechnique, 91128 Palaiseau, France R *+ EtS0 =———f/— Et-S0, S kf\;ﬂ;
3
Receied March 20, 1997 B >,

Although iodine is very rarely present in natural products,
organoiodine compounds are extremely useful intermediates in “

organic synthesis in general. For instance, iodides are necessar;ax ;\—soz Et Et-SO," + R_\=
starting materials for a large number of organometallic reagents Et' + SO, 4
and reaction$. In other transformations, the introduction of the . D

iodine atom is concomitant with the creation of another bond, i \ R-l F

as in the powerful iodolactonization reaction and related proce- £SOz E\ 1 ?v\—fsaza
dures® Organoiodine derivatives are also excellent precursors j 2a

for a wide variety of radical reactions, especially when used in Et—l + R

connection with stannane chemistry. One such process is the

replacement of the iodine with an allyl group through a radical substituted allyl ethyl sulfon@a is employed). Thus, in the
reaction involving an allylstannadé. Other allylating agents ~ presence of an initiator such as "2&obisisobutyronitrile
such as allyl sulfides or allyl sulfones can be used in combination (AIBN), an ethylsulfonyl radical §) may be generated by an
with equimolar amounts of hexabutyldif®. This radical ally- addition—fragmentation process. This radical is in equilibrium
lation is synthetically very useful since a new carb@arbon with sulfur dioxide and an ethyl radical, the equilibrium lying
bond is created and the allyl group (which may be substituted to the top, i.e., toward the more stable sulfonyl radical (step
in the 2-position) can serve as a precursor to a host of other de-A).2 However, even though equilibriur is unfavorablethe
rivatives. The use of tin-based reagents is, however, not alwayssystem can only@lve if the ethyl radical exchanges iodine
convenient because of the inherent toxicity of organotin deriv- with iodide 1 as in E, since sulfonyl radicals do not abstract
atives and the difficulty often encountered in removing tin resi- iodides from alkyl iodides (patB)® and, in this case, the reaction
dues from the produét’ These drawbacks become especially of ethylsulfonyl radicals with the starting allylsulforiza is
acute in large-scale work or in the preparation of active com- degenerate (pati). The iodine exchange (pat) is fast and
pounds for biological testing. We now describe a new process reversiblel® but in most cases involving aliphatic or alicyclic
which does not involve tin chemistry and which hinges on the substrates, the equilibrium will be tilted in the desired direction

use of degenerate reactions as a means of controlling thesince an ethyl radical is an unstabilized primary radiéal.

selectivity.

The process relies on the reaction of an alkyl iodldeith
an allyl ethyl sulfone2; the reaction manifold underlying our
working hypothesis is outlined in Scheme 1 (for clarity, un-
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RadicalR® produced in this step now adds irreversibly to allyl
sulfone2a (stepF); its reaction with starting iodidé (i.e., R°
+ R—1), even though fast, is degenerate and therefore does not
compete. In steg-, an ethylsulfonyl radical is liberated to
propagate the chain. In fact, the main irreversible and poten-
tially competing side reaction is the addition of ethyl radicals
to allyl sulfone2a (pathD), but this is much slower than iodine
atom transfer. If these considerations are valid, then upon
initiation an alkyl iodidel should react with ethyl allyl sulfone
2ato give an allyl derivative4, along with sulfur dioxide and
ethyl iodide (both volatile) as co-produdés.This productive
pathway is indicated by the heavier arrows in Scheme 1.
Indeed, when a refluxing solution of iodolactobeand allyl
ethyl sulfone2a (3 equiv) in heptane was treated portionwise
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with AIBN (0.12 equiv), a smooth reaction occurred to give Table 1. Radical Allylation of lodides
the expected allyl derivativéain 75% yield as an 85:15 mixture
of the exo and endo epimers. Under similar conditions, a lodide 1 Allyl sulfone 2 Product 4
number of other iodides were easily allylated. When the starting
iodide was not very soluble in heptane, a mixture of heptane/

R
chlorobenzene was usé#l.The results are collected in Table )\,sozEt o
1. As with radical reactions in general, a wide variety of §I¥O S
functional groups are tolerated, and the stereochemistry of the | o 2a (R=H) Y
1a

end product is governed by steric factors inherent in the

intermediate carbon radical. For example, whereas tricyclic 4a75%
iodolactonelegave only one isomer of the corresponding allyl (exo:endo 85:15)
derivative4e the carbohydrate iodidE, prepared from methyl BzQ ',* Bz2Q H
2,3-dibenzoyle-L-arabinopyranoside through the Garregg io- <I°> ~J-0
dination proceduré&! producedf as a 1:1 mixture of epimets. o1 2a(R=H) 5
Primary, secondary, and tertiary iodides could be used in the HOY H
process, even though, for primary iodides, the yield was lower 1b ab 75%
than average and a larger amount of AIBN (0.6 equiv) had to (exo:endo 10:1)
be used, reflecting perhaps the less favorable equilibrium :
depicted in stefe. The allyl group can be substituted in the e’
2-position, leading to substituted allyl derivatives. This is 2a (R =H) R
exemplified by the conversion of iodides into the correspond- o 2b(R=C) o)
ing 2-chloroallyl epimerd&ic by use of2b instead of2a, and e © o
iodide 1e into methallyl derivative4e by employment ofc. 2507_5:{;&%;)”:
By designing the present system such that most of the side 4c' 64% (R = CI;
reactions are redundant, we have succeeded in developing a new exozendo 4.511)

and general method for performing the radical allylation of

o 9s SRR I COMe S COMe
aliphatic and alicyclic iodides that does not suffer from the ™ 2
drawbacks associated with tin (or other heavy metal)-based 2a(R=H)
0
o

reagents. Yields are generally good and the purification is much 0

simpler: many of the co-products are volatile (Etl,3@nd it a © 4d 75%

is possible to remove excess allylating reagent by heating the (exo:e,fdo 5:1)
mixture to 56-60 °C while passing a stream of nitrogen or dry

air for a few hours. It is perhaps worth emphasizing the fact !

that the various allyl ethyl sulfones are cheap, easily stored, 2a (R=H) R

and trivial to maké® Moreover, it is almost certain that many OH 2¢(R=Mo) OH
other substituents can be placed on the allyl group and that °© °

groups other than allyl could be transferfetly analogy with ° °©

the more extensively studied organotin derivatives. 1e 4e 71% (R = H)

4e’ 77% (R = Me)
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